

2025年9月22日

九州工業大学、脳型計算を"結晶のまま"で実現 〜切断・研磨のみの YMnO₃単結晶で高精度・省電力 AI 演算に成功〜

国立大学法人九州工業大学ニューロモルフィック AI ハードウェア研究センターの堀部陽一教授(大学院工学研究院)、田中啓文教授(同センター長、大学院生命体工学研究科)、徐木貞助教(同センター)らの研究チームは、マルチフェロイック酸化物 YMnO $_3$ 単結晶を利用し、新しい物理リザバー計算(PRC)デバイスを開発しました。

YMnO₃特有の強誘電ドメイン構造が自然にランダムネットワークを形成し、AI 演算を実現します。切断・研磨のみの単結晶試料を用い、極めて低消費電力(総消費電力約 $1.77\,\mu$ W)で音声認識を実証するとともに、数字認識 75%、話者認識 98%という高精度を達成しました。さらに 150° Cでも特性が維持されることを確認し、高温環境での安定利用の可能性を示しました。

本研究成果は、次世代の超低消費電力 AI デバイス開発と実装に向けた重要な一歩となります。 9月12日(金)に独科学誌「Small」(ワイリー社)にオンライン版に掲載されました。

(URL:http://doi.org/10.1002/smll.202506397)

■研究の背景と意義

AI の高度化に伴い、省エネで効率の高い計算が求められています。その一つが、音声・動作・生体信号などのリアルタイムな処理を行う、「物理リザバー計算(PRC)」で、様々な物理現象や物質の性質を利用して情報処理を行います。しかし従来の光や電気化学などによる PRC の多くは、安定性の問題や、半導体回路との統合が難しいという課題がありました。本研究では、強誘電性や反強磁性を併せ持つマルチフェロイック YMnO $_3$ の単結晶に着目し、特別な加工を必要とせず高温でも安定に動作するという新しい PRC 材料の可能性を示しました。

■研究の特徴

YMnO₃単結晶では、三ツ葉状に広がる特殊な「ドメイン」構造が自然に形成されます。本研究では、このドメイン構造がランダムなネットワークを自発的に生み出し PRC に必要な非線形性やメモリ効果を発揮することを実証しました。切断・研磨のみで準備した単結晶を利用することで、極めて低消費電力(総消費電力約 $1.77\,\mu$ W、ドメイン当たり約 $0.02\,n$ W)での音声認識を実現し、話者認識では、98%の高精度を達成しました。さらに、PRC に必要な特性が 150° C でも安定して維持されることを確認し、高温環境下での応用可能性を示しました。

■研究の主なポイント

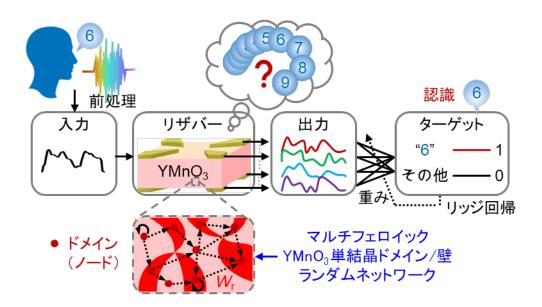
本研究の特徴は、以下の4点にまとめられます。

・有効性の実証: 切断・研磨のみの YMnO₃単結晶において、波形生成・メモリ容量・

NARMA2 予測などの一般的 AI ベンチマークを用いて PRC 性能を評価

し、物理リザバーとしての適合性を発見

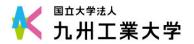
・高 い 精 度: 前処理簡素化でも数字認識 75%、話者認識 98%を達成


・卓越した省電力性: 総消費電力約 1.77 µW、ドメイン当たり約 0.02nW と極めて省電力

・耐熱性と外部制御: 150°Cでも特性が安定し、さらに外部電場によりドメイン構造を制御す

ることで、PRC 性能を変化可能に

■今後の展望


YMnO $_3$ 単結晶は化学的に安定で、実用的かつ耐久性に優れた PRC 材料として期待されます。 大規模デバイス製造においても信頼性や均一性を維持しやすく、従来の半導体製造プロセスと の統合も期待できます。今後、ロボットや $_1$ IoT 機器などへの実装が進めば、超低消費電力でプログラミング可能な AI デバイスの普及が加速されると予想されます。この成果は、エネルギー効率の高いスマート社会の実現に向けた一歩となりえます。

マルチフェロイック $YMnO_3$ 単結晶を用いて音声認識を行う様子物理リザバー演算により 10 桁の数字の発音の認識に成功した例

※本研究は JST CREST、JST ACT-X、JST ALCA-Next、科学研究費補助金、JKA 補助事業助成金の支援を受け遂行されたものです。

NEWS RELEASE

■掲載論文

論文	Intrinsic Disordered Network in Multiferroic YMnO₃ Single Crystals for In-
タイトル	Materio Physical Reservoir Computing through Tuneable Domain-wall Structure
著者	Muzhen Xu, Kyoka Furuta, Ahmet Karacali, Yuki Umezaki, Alif Syafiq Kamarol
	Zaman, Yuki Usami, Hirofumi Tanaka, and Yoichi Horibe
掲載雑誌	Small (ドイツ科学雑誌、ワイリー社)
	2025 年巻, e06397 (2025).
DOI 番号	10.1002/smll.202506397

【報道に関するお問い合わせ】 国立大学法人九州工業大学 管理本部総務課広報係

E-mail: pr-kouhou@jimu.kyutech.ac.jp

TEL: 093-884-3007

【研究に関するお問合せ】

国立大学法人九州工業大学大学院工学研究院教授 堀部 陽一

E-mail: horibe@post.matsc.kyutech.ac.jp

TEL: 050-1739-6134

Homepage:

http://w3.matsc.kyutech.ac.jp/transition/index.html

国立大学法人九州工業大学大学院生命体工学研究科

教授 田中 啓文

E-mail: tanaka@brain.kyutech.ac.jp

TEL: 050-1738-0167

Homepage:

https://www.brain.kyutech.ac.jp/~tanaka/index.html

<不在の場合>

国立大学法人九州工業大学ニューロモルフィック AI ハードウェア研究センター

助教 徐 木貞

TEL: 050-1739-6183

国立大学法人九州工業大学大学院生命体工学研究科

助教 宇佐美 雄生 TEL: 050-1738-0168