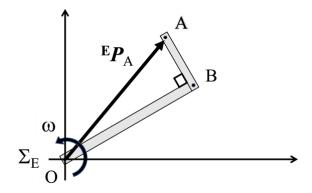
- 1. 図1に示す L 字の物体 ABO (注1)の運動について考える。L 字の物体は原点 O を中心に角速度 ω [rad/s]で回転している。直線 AB と直線 BO は直交している。 紙面に固定された座標系を Σ_E 、L 字の物体と回転する座標系を Σ_L とする。図 2 に示すように、 Σ_L の x 軸は原点 O から直線 OB に沿った方向、y 軸は原点 O から直線 BA に沿った方向にとする。 Σ_E における Σ_L の各軸の単位ベクトルを Ei、Ej 、Ek とする (注 2)。
 - (注1) L字の物体は剛体であり、変形しないものとする。
 - (注2) 変数の左上の表記は、座標系を意味する。
 - i. Σ_E において点 A の位置ベクトル EP_A と表されている。 Σ_L における点 A の位置ベクトル $^LP_A = (^Lx_A, ^Ly_A, 0)^T$ を求めよ。内積は演算子・で表せ。
 - ii. OB = 4[m]、AB = 3[m]の場合の Σ_E における点 A の位置ベクトルを求めよ。次に図 3に示す点 A の速度ベクトル E_{v_A} を求めよ。 $\omega=2$ [rad/s]とする。ここで、L 字の角速度ベクトル n は、回転軸の単位ベクトル E_k と角速度 ω を用いて $n=\omega$ E_k として表される。

速度ベクトル $^{E}v_{A}$ は、外積 (\times) を用いて $^{E}v_{A}=n\times ^{E}P_{A}$ となる。



 Σ_{L} E_{k} E_{k} E_{k}

図 1 物体 ABO が原点 O を中心に回転

図 2 物体 ABO と伴に回転する座標系 Σ_L とその単位ベクトル E i、 E j 、 E k

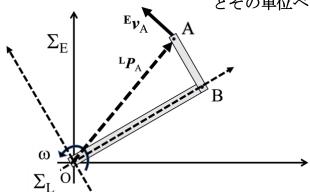


図3 Σ_L 上の点 A の位置ベクトル LP_A 、 Σ_E 上の点 A の速度ベクトル Ev_A

2/3

2. 図4に示すバネ・マス・ダンパ系で構成された台車の運動を計算したい。台車の質量 を M、バネ係数を k、ダンパ係数を c、外力を F(t)、バネの自然長からの変位を x(t)と し、次式の関係が成り立つものとする。t は時間であり、台車は床の上を滑らかに移動 するものとする。

$$M\frac{d^2x(t)}{dt^2} + c\frac{dx(t)}{dt} + k \cdot x(t) = F(t)$$
(1)

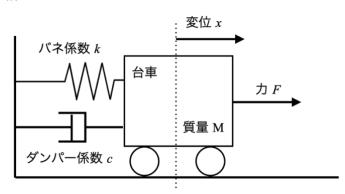


図4 バネ・マス・ダンパ系のモデル

台車の変位と速度で構成されたベクトル $X(t) = \left(x(t) \quad \frac{dx(t)}{dt}\right)^T$ を用いて書き直すと行列 A、B を用いて次式で表現できる。

$$\frac{d}{dt}X(t) = \begin{bmatrix} 0 & 1 \\ -k/M & -c/M \end{bmatrix}X(t) + \begin{bmatrix} 0 \\ 1/M \end{bmatrix}F(t) = AX(t) + BF(t)$$
 (2)

以下では、M=2、k=4、c=6とする。

- i. 行列 A の固有値 λ_1 、 λ_2 ($\lambda_1 > \lambda_2$)及び、それぞれに対応する固有ベクトル v_1 , v_2 を求めよ。ただし固有ベクトルは、 $||v_{1,2}|| = 1$ の列ベクトルで表すこと。
- ii. 固有ベクトルで構成された行列 $V = [v_1 \ v_2]$ の逆行列 V^{-1} を求めよ。次に、行列 V, V^{-1} を用いて A を対角化した行列 $A = V^{-1}AV$ を求めよ。

11. 線形代数

3/3

外力 F(t)=0 の場合、(2)式は $\frac{d}{dt}X(t)=AX(t)$ となり、次式で与えられる。 $X(t)=e^{At}X(0)$ (3)

 e^{at} の t=0 の近傍でのテーラー展開と同様、スカラ値 a の代わりに行列 A を代入すると e^{At} が計算でき、

 $e^{At}=I+tA+rac{t^2}{2!}A^2+rac{t^3}{3!}A^3+\cdots+rac{t^k}{k!}A^k+\cdots$ となる。ただし、Iは単位行列である。

ii. において求めた行列 Λ を用いて変形すると、(4)式が得られる。

$$e^{At} = e^{V\Lambda V^{-1}t} = I + t(V\Lambda V^{-1}) + \frac{t^2}{2!}(V\Lambda V^{-1})^2 + \frac{t^3}{3!}(V\Lambda V^{-1})^3 + \dots + \frac{t^k}{k!}(V\Lambda V^{-1})^k + \dots$$

$$= V\left(I + t\Lambda + \frac{t^2}{2!}\Lambda^2 + \frac{t^3}{3!}\Lambda^3 + \dots + \frac{t^k}{k!}\Lambda^k + \dots\right)V^{-1}$$
(4)

iii. (4)式を参考にして行列 e^{At} を求めよ。次に、初期変位 x(0)=1、初期速度 0 とした 場合の x(t)を求めよ。